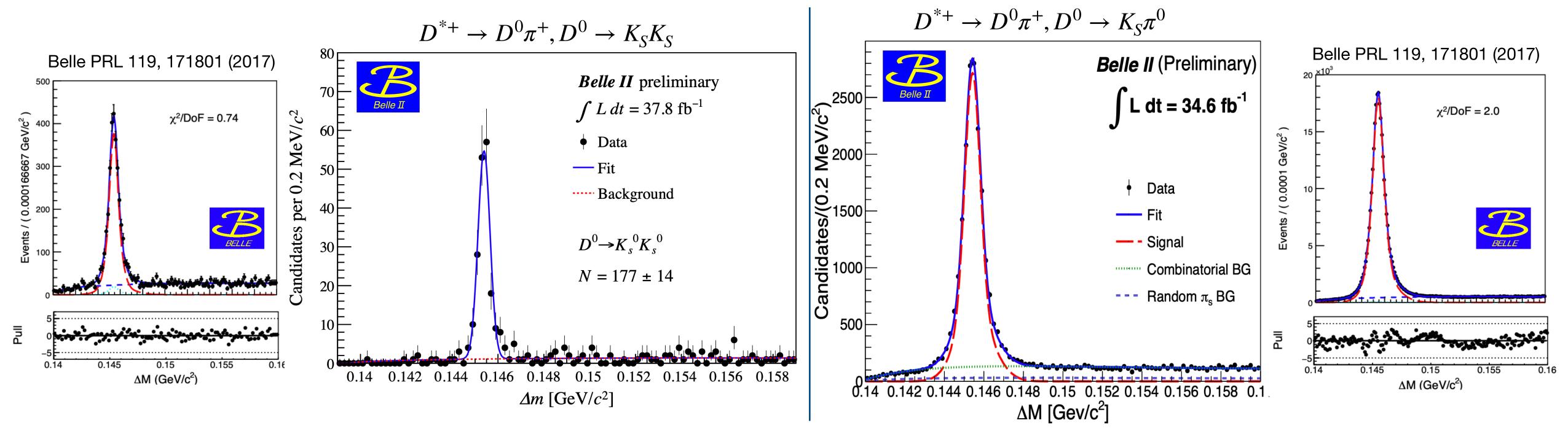

# Charm physics at Belle II

Jake Bennett University of Mississippi Snowmass virtual town hall - October 2, 2020








#### Belle II prospects and status

- Goal: collect 50x the Belle data tens of billions of charm mesons, baryons
- Belle II can measure, in both neutral and charged final states, branching fractions, CP asymmetries, isospin asymmetries, polarization, etc.
- Since data taking began in 2019, collected ~75 fb<sup>-1</sup>
  - Useful to study reconstruction performance, resolutions, systematics, etc.
  - Performance approaching that of Belle after just 1.5 years, though there is room for improvements



#### Potential for direct CPV measurements with 50 ab<sup>-1</sup>

- Comprehensive search for direct CPV, including final states with neutral particles
  - Important to clarify the picture of CPV in the charm sector
- Precision on the order of 10-4 with the full Belle II dataset, even for neutral modes
  - Some particularly interesting modes such as  $D^+ \to \pi^+ \pi^0$ , for which CPV in the SM is negligible

Belle II Physics Book Prog. Th. Exp. Phys. 2019, 1232C01 [arXiv 1808.10567]

| Mode                                     | $\mathcal{L}$ (fb <sup>-1</sup> ) | $A_{CP}~(\%)$                      | Belle II $50 \text{ ab}^{-1}$ |  |
|------------------------------------------|-----------------------------------|------------------------------------|-------------------------------|--|
| $D^0 	o K^+K^-$                          | 976                               | $-0.32 \pm 0.21 \pm 0.09$          | $\pm 0.03$                    |  |
| $D^0 	o \pi^+\pi^-$                      | 976                               | $+0.55\pm0.36\pm0.09$              | $\pm 0.05$                    |  |
| $D^0 	o \pi^0 \pi^0$                     | 966                               | $-0.03\pm0.64\pm0.10$              | $\pm 0.09$                    |  |
| $D^0	o K^0_S\pi^0$                       | 966                               | $-0.21\pm0.16\pm0.07$              | $\pm 0.02$                    |  |
| $D^0  ightarrow K_S^{	ilde{0}}  K_S^0$   | 921                               | $-0.02 \pm 1.53 \pm 0.02 \pm 0.17$ | $\pm 0.23$                    |  |
| $D^0 	o K_S^{	ilde 0}  \eta$             | 791                               | $+0.54\pm0.51\pm0.16$              | $\pm 0.07$                    |  |
| $D^0 	o K_S^0  \eta'$                    | 791                               | $+0.98\pm0.67\pm0.14$              | $\pm 0.09$                    |  |
| $D^0  ightarrow \pi^+\pi^-\pi^0$         | 532                               | $+0.43\pm 1.30$                    | $\pm 0.13$                    |  |
| $D^0 	o K^+\pi^-\pi^0$                   | 281                               | $-0.60 \pm 5.30$                   | $\pm 0.40$                    |  |
| $D^0 	o K^+\pi^-\pi^+\pi^-$              | 281                               | $-1.80  \pm 4.40$                  | $\pm 0.33$                    |  |
| $D^+ 	o \phi \pi^+$                      | 955                               | $+0.51\pm0.28\pm0.05$              | $\pm 0.04$                    |  |
| $D^+ 	o \pi^+ \pi^0$                     | 921                               | $+2.31\pm1.24\pm0.23$              | $\pm 0.17$                    |  |
| $D^+ 	o \eta \pi^+$                      | 791                               | $+1.74\pm1.13\pm0.19$              | $\pm 0.14$                    |  |
| $D^+ 	o \eta' \pi^+$                     | 791                               | $-0.12\pm 1.12\pm 0.17$            | $\pm 0.14$                    |  |
| $D^+ 	o K_S^0  \pi^+$                    | 977                               | $-0.36 \pm 0.09 \pm 0.07$          | $\pm 0.02$                    |  |
| $D^+  ightarrow K_S^{\widetilde 0}  K^+$ | 977                               | $-0.25\pm0.28\pm0.14$              | $\pm 0.04$                    |  |
| $D_s^+ 	o \widetilde{K_S^0}  \pi^+$      | 673                               | $+5.45 \pm 2.50 \pm 0.33$          | $\pm 0.29$                    |  |
| $D_s^+ 	o K_S^{\widetilde 0}  K^+$       | 673                               | $+0.12\pm0.36\pm0.22$              | $\pm 0.05$                    |  |
|                                          |                                   |                                    |                               |  |

#### Search for NP through T violation in D decays

- Measure non-zero values for a T-odd observable to search for T violation
  - Complimentary to *CP* violation measurements due to difference strong-phase dependence in the contributing amplitudes
- Four-body D decays:

$$C_T = \mathbf{p_1} \cdot (\mathbf{p_2} \times \mathbf{p_3})$$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$

$$\bar{A}_T = \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

$$a_{CP}^{T\text{-odd}} = \frac{1}{2} (A_T - \bar{A}_T)$$

| Experiment   | Decay                                              | Luminosity           | $a_{CP}^{T-odd}(\%)$                 |
|--------------|----------------------------------------------------|----------------------|--------------------------------------|
| BaBar (2010) | $D^0 \to K^+ K^- \pi^+ \pi^-$                      | 470 fb <sup>-1</sup> | $+0.10 \pm 0.51 \pm 0.44$            |
| BaBar (2011) | $D^+ \to K_{\scriptscriptstyle S} K^+ \pi^+ \pi^-$ | 520 fb <sup>-1</sup> | $-1.20 \pm 1.00 \pm 0.46$            |
| LHCb (2014)  | $D^0 \to K^+ K^- \pi^+ \pi^-$                      | 3 fb <sup>-1</sup>   | $+0.18 \pm 0.29 \pm 0.04$            |
| Belle (2017) | $D^0 \to K_s \pi^+ \pi^- \pi^0$                    | 966 fb <sup>-1</sup> | $-0.028 \pm 0.138^{+0.023}_{-0.076}$ |
| Belle (2019) | $D^0 \to K^+ K^- \pi^+ \pi^-$                      | 966 fb <sup>-1</sup> | $+0.52 \pm 0.37 \pm 0.07$            |

- Belle II can significantly expand on these measurements
  - Statistical and systematic precision
  - Variety of final states, particularly including neutral particles

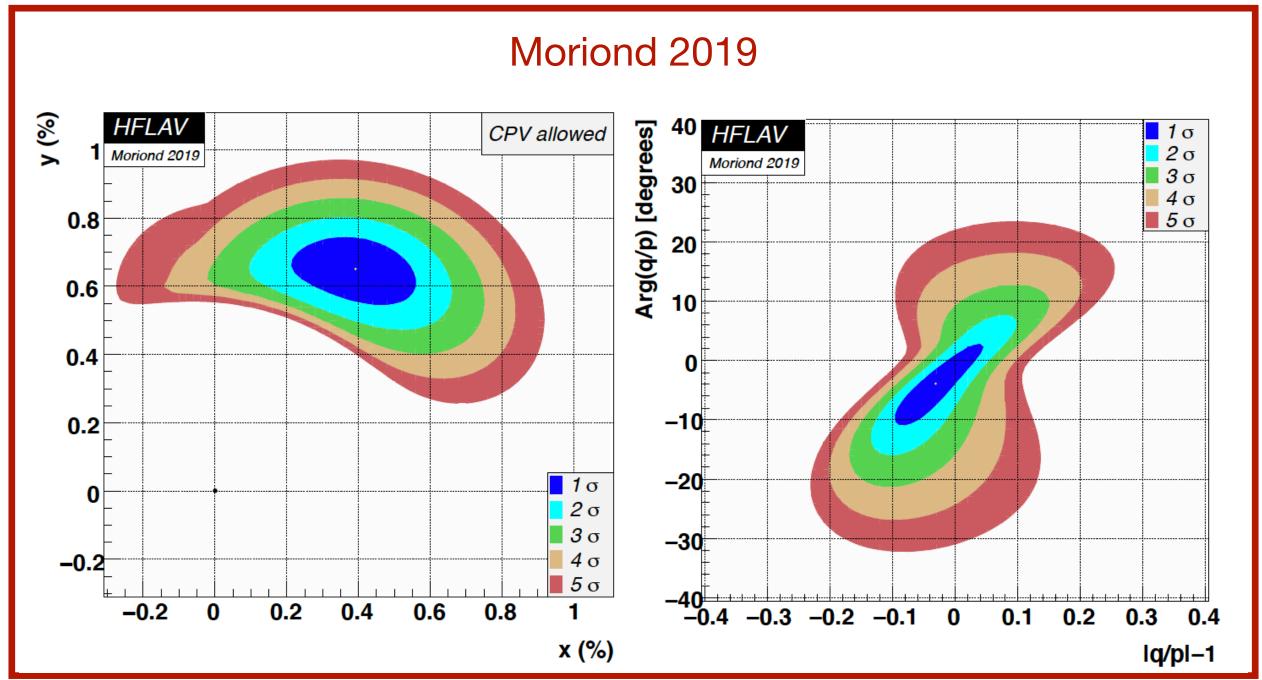
## CP violation in charmed baryon decays at Belle II

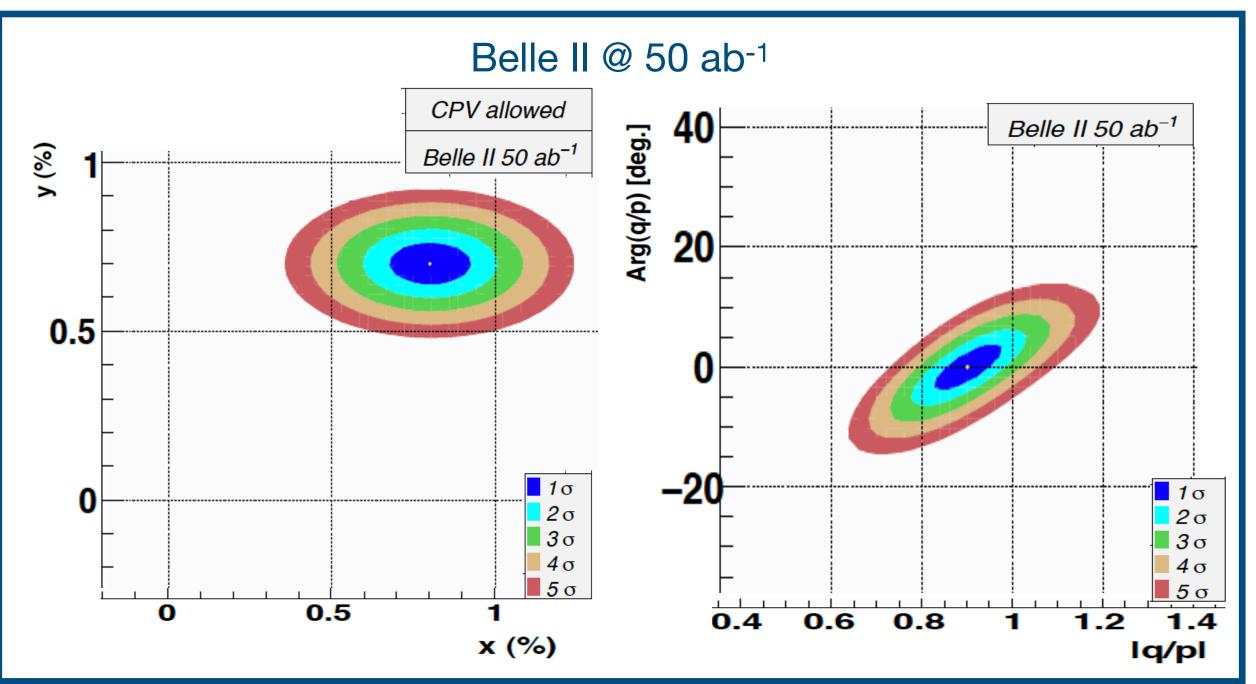
- Charmed baryon decays largely unexplored
  - LHCb studied  $\Lambda_c^+ \to p K^+ K^-, p \pi^+ \pi^-, \Delta A_{CP} = (0.30 \pm 0.91 \pm 0.61)\%$
  - Expectations from U-spin symmetry suggest modes of interest

$$A_{CP}(\Lambda_c^+ \to pK^-K^+) + A_{CP}(\Xi_c^+ \to \Sigma^+\pi^-\pi^+) = 0$$

$$A_{CP}(\Lambda_c^+ \to \Sigma^+\pi^-K^+) + A_{CP}(\Xi_c^+ \to pK^-\pi^+) = 0$$

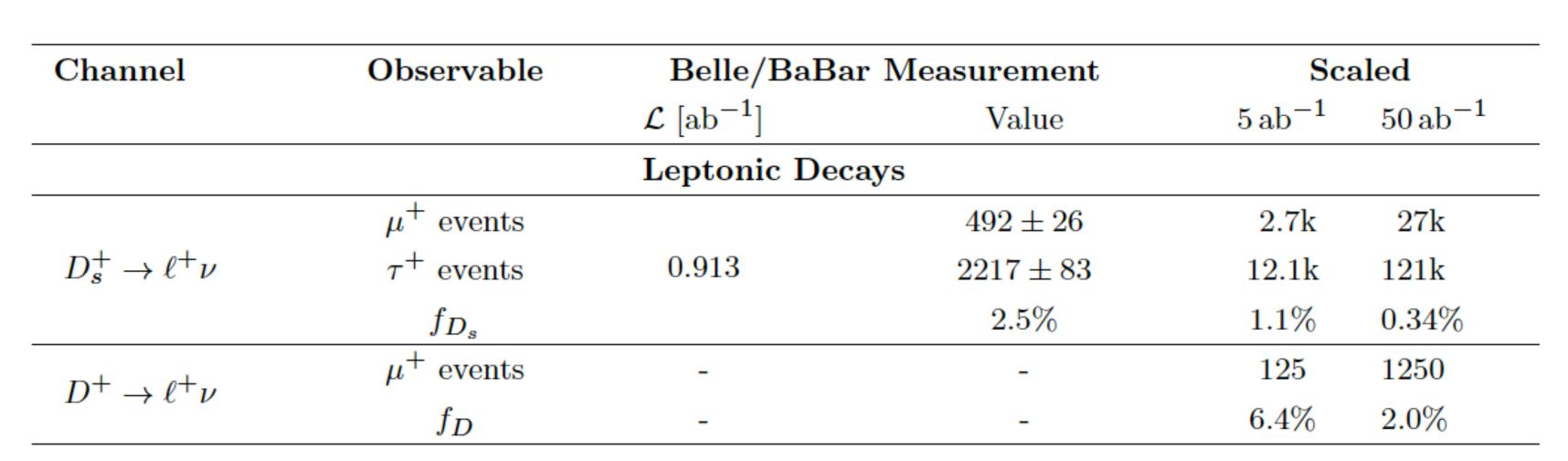
$$A_{CP}(\Lambda_c^+ \to p\pi^-\pi^+) + A_{CP}(\Xi_c^+ \to \Sigma^+K^-K^+) = 0$$

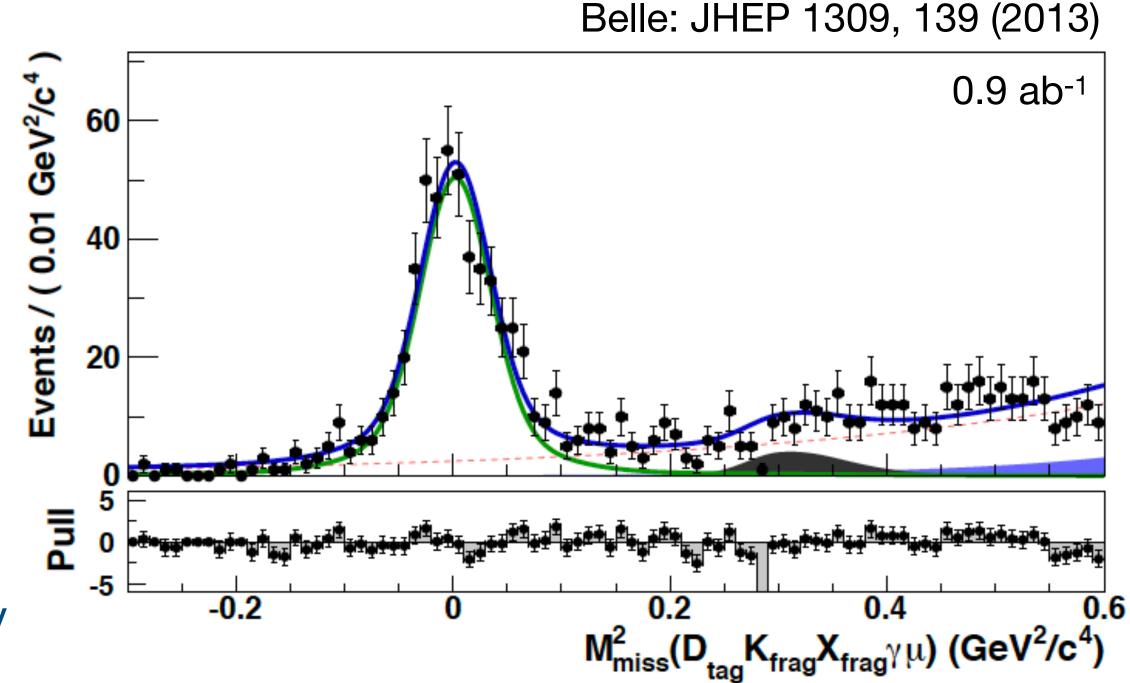

- Some significant benefits to studies at Belle II
  - Neutral final states can be accurately measured (e.g.  $\Sigma^+ o p\pi^0$ )
  - $e^+e^-$  collisions allow for better disentanglement of detector and production asymmetries
  - More straightforward to extract CP asymmetries, rather than CP asymmetry differences


## Indirect CPV in charm mixing

- SM mixing rate is sufficiently small that NP contributions may be detectable
- First evidence of  $D^0-\bar{D}^0$  mixing from Belle/BaBar in  $D^0\to K^+K^-,\pi^+\pi^-,K^+\pi^-$
- Mixing measured in several decay modes from Belle, BaBar, CDF, LHCb
- High statistics Belle II data can improve precision with, for example,  $D^0 \to K_{\rm c} \pi^+ \pi^-$

| —————————————————————————————————————— | stat. syst.          |           | Total     | stat. syst.            |        | Total     |           |           |
|----------------------------------------|----------------------|-----------|-----------|------------------------|--------|-----------|-----------|-----------|
|                                        |                      | red.      | irred.    |                        |        | red.      | irred.    |           |
|                                        | $\sigma_x (10^{-2})$ |           |           | $\sigma_y \ (10^{-2})$ |        |           |           |           |
| $976 \text{ fb}^{-1}$                  | 0.19                 | 0.06      | 0.11      | 0.20                   | 0.15   | 0.06      | 0.04      | 0.16      |
| $5~\mathrm{ab^{-1}}$                   | 0.08                 | 0.03      | 0.11      | 0.14                   | 0.06   | 0.03      | 0.04      | 0.08      |
| $50 \text{ ab}^{-1}$                   | 0.03                 | 0.01      | 0.11      | 0.11                   | 0.02   | 0.01      | 0.04      | 0.05      |
|                                        | $ q/p  (10^{-2})$    |           |           |                        | $\phi$ | (°)       |           |           |
| $976 \text{ fb}^{-1}$                  | 15.5                 | 5.2 - 5.6 | 7.0 - 6.7 | 17.8                   | 10.7   | 4.4 - 4.5 | 3.8 - 3.7 | 12.2      |
| $5 \text{ ab}^{-1}$                    | 6.9                  | 2.3 - 2.5 | 7.0 - 6.7 | 9.9-10.1               | 4.7    | 1.9 - 2.0 | 3.8 - 3.7 | 6.3 - 6.4 |
| $50 \text{ ab}^{-1}$                   | 2.2                  | 0.7-0.8   | 7.0 - 6.7 | 7.0 - 7.4              | 1.5    | 0.6       | 3.8-3.7   | 4.0-4.2   |


Conservative: do not include improvements in decay time resolution, which is a factor of ~2 over Belle/BaBar






#### Leptonic and semileptonic charm decays

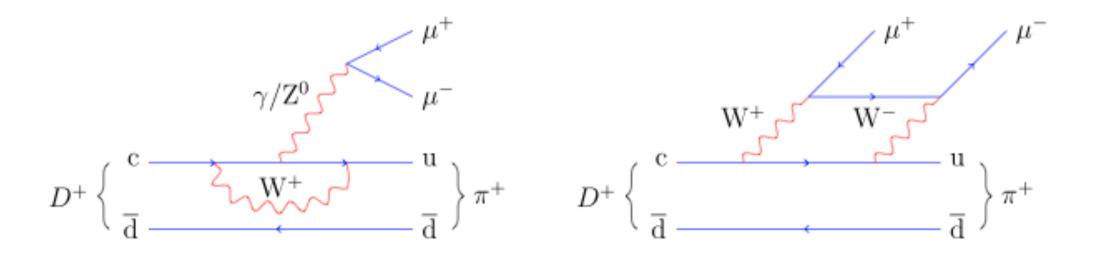
- Goal: precise decay constants and form factors
  - Provides a test for Lattice QCD
  - Input from Lattice QCD to measure CKM elements
- Recoil method successfully exploited for Belle D<sub>s</sub> decays
- Belle II statistics allow
  - Measurements of absolute branching fractions
  - Studies of semileptonic decays
  - Searches for rare/forbidden decays with missing energy
- Also works for charmed baryons





## Progress heavily dependent on theoretical side

(LQCD improvements necessary to fully exploit larger data sets)


#### Rare and radiative decays

- NP contributions could enhance CP asymmetry in radiative decays  $D^0 o V \gamma$  by up to an order of magnitude
  - Current measurements statistically limited

| measurements statistically limited |          |       | (~1 ab <sup>-1</sup> )       | 5 ab <sup>-1</sup> | 50 ab <sup>-1</sup> |  |  |  |
|------------------------------------|----------|-------|------------------------------|--------------------|---------------------|--|--|--|
| Rare and Radiative Decays          |          |       |                              |                    |                     |  |  |  |
| $D^0 \to \rho^0 \gamma$            | $A_{CP}$ |       | $+0.056 \pm 0.152 \pm 0.006$ | $\pm 0.07$         | $\pm 0.02$          |  |  |  |
| $D^0 \to \phi \gamma$              | $A_{CP}$ | 0.943 | $-0.094 \pm 0.066 \pm 0.001$ | $\pm 0.03$         | $\pm 0.01$          |  |  |  |
| $D^0 \to \overline{K}^{*0} \gamma$ | $A_{CP}$ |       | $-0.003 \pm 0.020 \pm 0.000$ | $\pm 0.01$         | $\pm 0.003$         |  |  |  |

Belle result

- Rare decays generally mediated by quark-level FCNC transitions  $c \to u\ell^+\ell^-$ ,  $c \to u\gamma^*$
- Studies of  $c \to u\ell^+\ell^-$ , analogous to  $b \to s\ell^+\ell^-$  transitions, useful for tests of LFU/LFV
  - Belle II competitive for electron channels



| $D^0 \rightarrow$          | $\mathcal{B}$ measured   | Belle expected                            | Belle II expected                      | $SM SD \mathcal{B}$  | $SM LD \mathcal{B}$ |
|----------------------------|--------------------------|-------------------------------------------|----------------------------------------|----------------------|---------------------|
|                            |                          | $\sigma(\mathcal{B})$ or $\mathcal{B}$ UL | $\sigma(\mathcal{B})$ or $\mathcal{B}$ |                      |                     |
| $\pi^+K^-\mu^+\mu^-$       | $4.17 \pm 0.12 \pm 0.40$ | $\pm 0.35$                                | $\pm 0.16$                             | 0                    | ~ 10                |
| $\pi^+K^-e^+e^-$           | $4.0 \pm 0.5 \pm 0.2$    | $\pm 0.35$                                | $\pm 0.16$                             | 0                    | $\sim 10$           |
| $\pi^+\pi^-\mu^+\mu^-$     | $0.96 \pm 0.12$          | $\pm 0.35$                                | $\pm 0.16$                             | $10^{-3} - 10^{-4}$  | ~ 1                 |
| $\pi^{+}\pi^{-}e^{+}e^{-}$ | < 7                      | $\pm 0.35$                                | $\pm 0.16$                             | $10^{-3} - 10^{-4}$  | ~ 1                 |
| $K^+K^-\mu^+\mu^-$         | $0.15 \pm 0.03$          | < 0.7                                     | < 0.32                                 | $\sim 10^{-4}$       | $\sim 0.1$          |
| $K^+K^-e^+e^-$             | < 11                     | < 0.7                                     | < 0.32                                 | $\sim 10^{-4}$       | $\sim 0.1$          |
| $\pi^0\ell^+\ell^-$        | < 4                      | < 3.7                                     | < 1.7                                  | $1 \times 10^{-6}$   | 0.21                |
| $\eta  \ell^+ \ell^-$      | < 3                      | < 7.7                                     | < 3.5                                  | $2.5 \times 10^{-4}$ | 0.05                |
| $\eta'\ell^+\ell^-$        |                          |                                           |                                        | $9.7 \times 10^{-6}$ | 0.02                |
| $\bar{K}^0\ell^+\ell^-$    | < 24                     | < 7.7                                     | < 3.5                                  | 0                    | 0.43                |

#### Conclusions

- The Belle II experiment will have a rich charm physics program
  - Direct and indirect CPV studies in charm mesons and baryons
  - Additional prospects in charm spectroscopy (the topic of another talk)
- Belle II is expected to make a wide range of forefront measurements with discovery potential
  - High statistics, good performance for neutral particles
- LOIs: RF/SNOWMASS21-RF1\_RF4\_BelleII-030, RF/SNOWMASS21-RF1\_RF0\_Bennett-021